

Date Planned : / /	Daily Tutorial Sheet-10	Expected Duration : 90 Min		
Actual Date of Attempt ://	Level-2	Exact Duration :		

Paragraph for Q. 116 to 118

116. Match the Column:

Column-I (Statements)			Column-II (Corresponding metals)		
(A)	Hydrometallurgy applied in commercial extraction of metal	(p)	Ag		
(B)	Carbon reduction applied in commercial extraction in metal	(p)	Zn		
(C)	Aqueous salt solution is used in electrolytic Refining method	(r)	Sn		
(D)	Metal present in anode mud of refining of crude copper	(s)	Au		
		(t)	Cu		

117. Match the Column:

Column-I			Column-II		
(A)	Poling	(p)	Titanium		
(B)	Cupellation	(p)	Copper		
(C)	Electro-refining	(r)	Silver		
(D)	Van Arkel method	(s)	Tin		

118. Match the Column :

Column-I (Metal)			Column-II (Process involved in commercial extraction from their ore)			
(A)	Pb	(p)	Bessemerisation			
(B)	Cu	(p)	Roasting			
(C)	Zn	(r)	Pyrometallurgy			
(D)	Fe (Steel)	(s)	Self-reduction method			

*119. Which of the following reaction in the blast furnace is/are endothermic?

(A)
$$C(s) + O_2(g) \rightleftharpoons CO_2(g)$$

(B)
$$CO_2(g) + C(s) \Longrightarrow 2CO(g)$$

(C)
$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

(D)
$$\operatorname{Fe_2O_3(s)} + 3\operatorname{CO}(g) \Longrightarrow 2\operatorname{Fe}(\ell) + 3\operatorname{CO_2}(g)$$

*120. Highly electropositive metals can not be extracted by carbon reduction process because these :

- (A) Metals combine with carbon to form carbides
- (B) Metals do not react with carbon
- (C) Metal oxides are not reduced by carbon
- (D) Loss of metal is more by vaporization

*121.	The fu	The function of adding cryolite in the electrolytic reduction of alumina by Hall-Heroult process is to :							s to:
	(A)	dissolve alumina			(B)	lower the melting point of alumina increase the electrical conductivity of alumina			
	(C)	lower the fuel b	lower the fuel bill						
*122.	Ampho	teric nature of al	uminiur	n is employed in	which of	f the following pr	ocess for	r extraction of a	duminium?
	(A) Baeyer's process			(B)	Hall's process				
	(C) Serpek's process				(D)	Dow's process			
*123.	Metals	which can be ex	tracted	by smelting proc	ess are :				
	(A)	Pb	(B)	Fe	(C)	Zn	(D)	Al	
*124.	Which	of the following	g metal	(s) is/are comm	nercially	extracted by s	self redu	action method	from their
	corresponding ore ?								\odot
	(A)	Cu	(B)	Fe	(C)	Pb	(D)	Hg	
*125.	The ad	vantage(s) of usir	ıg carbo	n to reduce a nui	mber of	oxides and other	compou	ınds are :	
	(A)	Easy availability of coke							
	(B)	Low cost of car	bon						
	(C)	Tendency of car	rbon to	show catenation					
	(D)	Presence of car	bon low	ers the melting r	oint of t	he oxides			